STM32 Journal

Volume 1, Issue 2

In this Issue:
)) Bringing 32-bit Performance to 8- and 16-bit Applications
)) Developing High-Quality Audio for Consumer Electronics Applications
)) Bringing Floating-Point Performance and Precision to Embedded Applications
)} Achieving Ultra-Low-Power Efficiency for Portable Medical Devices
)) Accelerating Time-to-Market Through the ARM Cortex-M Ecosystem

)} Introducing a Graphical User Interface to Your Embedded Application

Developing High-Quality Audio for
Consumer Electronics Applications

By Paul Beckmann, CEO/CTO, DSP Concepts
Dragos Davidescu, Chief System Architect, STMicroelectronics
John Knab, Application Engineer, STMicroelectronics

With the falling cost of
high-performance MCUs,
manufacturers are considering
adding digital audio functionality
to more and more consumer
devices and other embedded
applications. Their goal is to
support the wide variety of media
sources users want to access
such as an iPhone, Internet
radio, external USB devices, and
SD cards.

Achieving high-quality sound
output, however, is non-
trivial. Sound quality depends
greatly upon the final system
configuration, making it difficult
to design even when prototype
hardware is available. In
addition, implementing real-
time digital signal processing
algorithms introduces a

whole new set of concerns

for developers used to MCU-
based design. These include
implementing advanced filters
and processing algorithms,

handling fixed-point issues,
using DSP-like instructions,
and optimizing complex
algorithms for speed, MIPS,
memory, and power.

In this article, we’ll show how
developers can leverage MCU-
based digital signal processing
(DSP) and floating-point unit
(FPU) capabilities to enable
real-time audio playback,
implement enhanced algorithms,
convert between multiple

clock domains, manage high-
speed communications without
impacting audio quality, optimize
designs to balance quality and
cost, and manage other system
tasks such as a graphical

user interface, all with a single
microcontroller.

Consumer Audio

Traditionally, introducing audio

to an embedded application
requires digital signal-processing
capabilities beyond the capabilities

of most MCUs. Even a “simple”
product like an iPod speaker dock
requires a significant number of
advanced audio algorithms to
achieve full performance:

Spatial enhancement: In

an iPod docking station, the
speakers may be only 12-18
inches apart. To create a more
spacious, rich sound, spatial
enhancement is required is

to compensate for the close
proximity of the speakers.

Multi-channel audio: For
systems supporting more than
two speakers, the stereo input
signal requires processing to
create the additional audio
channels.

Equalization: Speakers need to
be equalized to achieve better
sound quality. If the speakers

in use change, the equalization
needs to be adjusted as well.
Developers can employ a
variety of equalization methods,

STM32 Journal

including graphic and parametric
equalization. For higher-end
applications, developers may
even want to design their own
equalization algorithms using a
tool like MATLAB.

Peak limiting: Speakers exhibit
nonlinearity at louder sound
levels. By applying a time-varying
gain and carefully controlling the
peak levels, the system can play
louder with a minimum amount
of distortion.

Boost: When listening to music
at low volume levels, much
detail, and therefore depth, can
be lost. Boosting of the bass and
certain other frequencies at low
volume levels using loudness
compensation or perceptual
volume-control techniques can
significantly improve perceived
sound quality.

Level matching: Level matching

eliminates the need for users to
adjust the volume for each song

11

STM32 Journal

when shuffling through a large
library of albums.

Digital audio has commonly
been implemented in consumer
electronics and embedded
applications using a second
processor dedicated to this task.
To meet market cost pressures,
however, manufacturers need to
be able to process audio on the
host CPU.

In general, it is easier to
implement audio on an MCU
than it is to implement real-time
responsiveness and connectivity
on a DSP. DSPs, while excellent
at processing audio, don’t have
the peripherals or interrupt
responsiveness required for real-
time systems. DSP architectures
are also typically designed for
high-end signal processing

and massive parallelism that
exceeds the requirements of the
typical consumer application. In
addition, DSPs are not designed
to support communication
interfaces like USB, SD cards, or
Wi-Fi, so a DSP-based docking
station would still require a
second processor to handle
connectivity.

With the introduction of DSP
capabilities to MCU instruction
sets, MCUs now have the
advanced math processing

Power supply
1.2V regulator

R/PDR/PVD
Xtal oscillators
32 kHz + 4 ~26 MHz

32 kHz + 16 MHz

2x watchdogs
ndependent and window

51/82/114/140 1/0s

Cyclic redundancy
check (CRC

Control
2x 16-bit motor control
PWM
Synchronized AC timer
10x 16-bit timers
2x 32-bit timers

Floating-point unit (FPU)
controller (NVIC)

JTAG/SW debug/ETM

16-channel DMA

Crypto/hash processor

3DES, AES 256
SHA-1, MD5, HMAC

True random number generator (RNG)

Connectivity

with [EEE 1588

6x USART

LIN, smartcard, IrDA,

modem control

Analog

2-channel 2x 12-bit DAC

3x 12-bit ADC

24 channels / 2.4 MSPS

Temperature sensor

Figure 1 ST has expanded its STM32 MCUs beyond the base Cortex-M architecture with a variety of integrated peripherals
to create a wide range of MCUs that optimize performance, memory, and cost for nearly every embedded application.

capabilities required to handle
not only basic audio processing
but the advanced algorithms
required to improve quality as
well. In addition, rather than
requiring developers to hand-
code assembly as is typical for
DSP-based designs, MCUs offer
ease-of-use and faster time-to-
market through C programming
and application libraries.

MCUs are also specifically

architected to provide short and

deterministic interrupt latency as
well as ultra low-power operation
for battery-powered applications.

The STM32 MCU + Audio
Architecture

The STM32 architecture from

ST has been designed to

bring 32-bit MCU capabilities

to a wide range of consumer
audio applications, including

multimedia speakers, docking
stations, and headphones. The
STM32 F4, based on an ARM
Cortex-M4 core operating at
up to 168 MHz, also integrates
capabilities such as DSP
instructions and a floating-point
unit to allow manufacturers

to produce consumer audio
applications offering quality
playback at the lowest cost
(see Figure 1).

12

Accelerating
Audio Product
Development

f 5

=k
< @S
— . T
= i_%"‘

4

3 E
B

i

Ty

=)

x]
G
g

tai

=/

=

1= 1 15 5]

=

(>
i1F] | {5 AE]

#Z

uni:ing
Audio Weaver support
for the STM32 F4

Reference designs for USB audio,
multimedia speakers, headphones,
and docking stations

www.dspconcepts.com

STM32 Journal

DSP application example: MP3 audio playback

General Purpose MCUs Min

Discrete DSPs

Cortex-M4

Specialised Audio DSPs

0 5 10 15 20 25 30

MHz required for MP3 decode (smaller is better!)

DSP Concept

Figure 2 With its Cortex-M4 core, the STM32 F4 offers excellent audio processing capabilities
that exceed the performance of many general-purpose MCUs and discrete DSPs.

The STM32 F4 offers excellent Digital Signal Processing

audio processing capabilities Instructions: With the STM32
(see Figure 2). With its rich F4, developers have access
peripheral integration, a single to up to 105 DSP-specific
STM32 F4 can provide a cost- instructions. These instructions

effective, single-chip solution for include single-cycle multiply-
implementing embedded audio and-accumulate (MAC),

that combines performance, saturated arithmetic, and both
ease-of-use, connectivity, and 8- and 16-bit SIMD integer
signal processing to achieve operations. Its architecture is
quality audio playback. Key designed to enable high-quality
capabilities of the STM32 F4 audio in consumer electronics
for accelerating audio design, and embedded applications in a
enhancing performance, and more cost-effective manner than
lowering system cost include: is possible with DSPs.

13

STM32 Journal

Floating-Point Unit: All STM32

Cortex-M4 General- | General-

this approach adds complexity

in that underflow and overflow
need to be manually managed. In
addition, fixed-point processing
offers less dynamic range than
floating-point, which impacts
many audio functions. With

the integrated FPU, there is no
penalty for retaining this precision.
Code based on floating-point can

F4 devices also have an ey sumese | purpose || Ethemet §usBoTa Bus masters
integrated floating-point unit
(FPU). While signal-processing oy 168 MHz
algorithms can be implemented A2 Ag = 100 Mbit/s | 480 Mbit/s
. o K 2 12.5 MByte/$ 60 MByte/s
using fixed-point arithmetic, 3 2
B
C

@-64 Kbytes SRA

Bus Slaves

— B — FSMC

AHB2 peripheral

AHB1/APB1t | >
I AHB1 peripheral [‘ .
‘ AHB1/APB2 — A
- = —> SRAM 16 Kbytes g

—@ @ SRAM 112 Kbytes

7-layer 32-bit multi-AHB bus matrix

. S
also be substantially faster and — 672 MByte/s D . g_D Flash
requires less memory than fixed- \ 672 MByte/s | <8 | 1 Mbyte
point code. L <
32-bit Efficiency: The bus Figure 3 The multi-layer matrix that interconnects STM32 MCUs with peripherals and memory enables simultaneous transfer between multiple

masters and slaves without requiring involvement from the CPU. This provides STM32 MCUs with a tremendous interconnect

size of the processor has a capacity that eliminates peripheral and memory access bottlenecks for the highest operating performance.

tremendous impact on both
performance and power

efficiency. Even if audio Multi-Layer Bus Fabric: neither core application tasks burdening the CPU. Figure
samples ére streaming at 16 The key to real-time signal nor audio playback compromise 3 shows the high level of

bits, the system still needs processing is maintaining each other. parallelism that can be achieved
32-bits to store intermediate efficient data flow. In a The STM32 architecture is through simultaneous transfers

computations. A 16-bit MCU consumer audio device, designed to minimize this over a multi-layer fabric:

however, the MCU must

or DSP, for example, requires t onlv sianal data but problem so that developers Program code is executed
seven operations (4 multiplies move not only signal data bu do not need to spend time from Flash with data stored in
and 3 additions) just to complete manage program memory, resolving potential conflicts. SRAM (red)

communication ports, and other

a single 32 x 32 multiplication. This is achieved through the low

The STM32 F4 can execute system tagks. The complex]ty interrupt service overhead of The cqmrgfesseduegjém so’lrream
a 32-bit MAC (multiply and and real-time nature of audio gr\135 Geyices combined with e S RAM (araen).
accumulate) with only one algorithms ‘T"ISO requires the multi-layer bus fabric that storedin (green).
single-cycle operation. them to be integrated with allows multiple DMA transactions ! CPU with DSP and FPU
application code to ensure that 4 .., simultaneously without functionality accesses the

14

compressed audio stream for
decompression and signal
processing (green)

Decompressed MP3 data is
sent from the CPU to SRAM
(yellow)

Audio data is output to 12S
through DMA (orange)

Graphical icons are transferred
from Flash to the display
through DMA (blue)

Communications Interfaces:
Users want to be able to access
audio data from different sources
and over different interfaces.
With the right mix of interfaces—
including USB (host and device),
Ethernet for Internet Radio,
SDIO, and external memory —
developers can create flexible
devices that support a wide
range of usage models.

In addition to being able to
receive data without loading

the CPU, developers need to

be able to address the many
issues related to streaming
audio, including lost packets and
lack of feedback controls. For
example, USB feedback controls
to prevent under and overflow of
the audio buffer are not always
used or well implemented. This
can result in lost or dropped
packets that impact audio

STM32 Journal

quality. To overcome this
limitation, developers can utilize Complete audio system
sample-rate conversion (SRC).

, : STM32 F2 | STM32 F4 Flash RAM
SRC is also useful for converting CPU load CPU load footprint footprint
between audio speeds (i.e., clock
domains) while maintaining audio ~ MP3 decoder L% O el e
fidelity, compensating for slight 55 o0 oqer 22.5% 9% 25k 16060
mismatches in clock speed, or
for mixing audio from different WMA decoder 17.5% 6% 45k 36076
sources. For applications that
need SRC, the STM32 F4 AAC+ v2 decoder 25% 1% 54k 87000
: 0/ i
requires only 10% utilization, Channel mixer B - s .

leaving plenty of headroom for
other signal-processing tasks. Parametric Equalizer 16% 12% 2k 300

Multiple Clock Sources:
Consumer audio systems require
a number of different clock SRC 22.5% 10% 17.5k 1880
domains—including the CPU,

USB’ anq 128 —that have fixed Figure 4 When computing 16- and 32-bit DSP functions, theSTM32 F4 offers a 25-70%
frequenmes and need to be improvement. As a result, systems can drop into sleep mode faster to conserve

accurate as well as free of jitter_ power or run more algorithms to further improve audio quality.
Trying to use the same clock
for each of these can impact

Loudness Control 4.5% 3.5% 3.25k 632

straightforward to achieve a clean . .
clock at 168 MHz for the CPUL without loading the CPU, developers need

44 1 KHz for an 12S interface or
48 MHz for USB but not for all

three using a single clock source. related to streaming audio, including lost

The STM32 F4 integrates two
PLLs for increased clocking

to be able to address the many issues

packets and lack of feedback controls.

flexibility. The main PLL is used For example, USB feedback controls to

to generate the system clock

and the second PLL is available prevent under and overflow of the audio

to generate the accurate clocks .

needed for high-quality audio. are not always used or well implemented.

15

Audio Weaver Designer - MACrossover. awd

File Edt View Buld

Fe@R& abuy?

A Help
vii% QANQAA EPATLCL B B4

| 8 coren2] 3
=
= <=]
HW input HW Dutput s0F SOF sC
L =
> a5 Eey - n 1T "IJL’
E=> <] SOF1 sor2 8¢
Subsystem Subsystem Kowehiwaryl
Ingad Ouiput Add1
“*y -
Subsystem Marker SYS_in]
MumChanneis2 Scaler
- BladkSize: 32
— — ¥ kample Rate: 42000 Galaty
L..L.i BasicAudioFloat32 “ || Data Type: sz
AdvancedaudioFioat32 S r
B
| B FrequencyDomanFinat32 o = soF sof sc
| B MathFloat32 I I
(i vsc s0F3 sOFa 56
| B Brcadcast Kovartimay2 infertezied
| B DTS
|] PostProcess : a
emu i« v W]\Top £ TrebleLimiter / §ii| | ‘.rjl

Figure 5 Audio Weaver from DSP Concepts offers a GUI-based development environment that
enables developers to design the signal flow for their application by selecting processing
blocks and connecting them using a drag-and-drop editor.

The ability to source different
clock domains enables designs
based on the STM32 architecture
to maintain a permanent USB
connection and avoid audio
synchronization issues.

Integrated Audio Interfaces:
The STM32 F4 has two full-
duplex 12S standard stereo
interfaces offering less than
0.5% sampling frequency error.
There is also an external clock
input to the I12S peripheral if

an external high-quality audio
PLL is preferred. In addition to

simplifying design, integrating
the I12S interfaces reduces
component count, board size,
and system cost.

MCU Peripherals: The STM32
architecture includes all of the
real-time peripherals required for
even the most demanding MCU-
based application.

The combination of the STM32
F4’s capabilities brings a new
level of performance to audio
applications. Performing

a long 32-bit multiply or
multiply-accumulate (MAC)

operation on an STM32 F2, for
example, takes 3-7 cycles. With
the STM32 F4, this operation

is performed in a single cycle.
When computing 16- and 32-
bit DSP functions, the STM32
F4 offers a 25-70% (see Figure
4) improvement. As a result,
systems can drop into sleep
mode faster to conserve power
or run more algorithms to further
improve audio quality.

In addition to the integrated DSP
capabilities of the STM32 F4,
developers have access to the

STM32 Journal

CMSIS DSP library to accelerate
development. The CMSIS

DSP library includes a large
number of DSP and floating-
point functions optimized for
the algorithms commonly used
in audio applications. This
library is supplied by ARM for
processors built around the
Cortex-M4 processor. DSP
Concepts is the company that
wrote the CMSIS DSP library.
They have leveraged their
intimate knowledge of the library
to create the audio blocks that
make up their signal processing
design tool, Audio Weaver.

Audio Algorithm Design

Audio Weaver enables
developers to quickly design
the audio processing portion
of their system; i.e., everything
that goes on between receiving
an audio signal and outputting
it. Audio Weaver offers a
GUIl-based development
environment that enables
developers to design the signal
flow for their application by
selecting processing blocks
and connecting them using

a drag-and-drop editor (see
Figure 5). Each block has hand-
optimized code behind it, and
the tool automatically creates
the required data structures.

16

Because complex functions are
built from base audio functions,
the final code executes with

no performance or efficiency
losses compared to hand-
coding from scratch.

When algorithm code is written
by hand, each design iteration
requires substantial time
investment since the code must
be optimized and tuned to

see what its actual impact on
sound quality and processing
load are. With Audio Weaver,
the design cycle is much faster,
giving developers the ability to
explore more configurations in
their efforts to increase sound
quality while reducing system
cost. Code is highly optimized
for MIPS and memory usage,
supports floating-point
processors such as the STM32
F4, offers flexible deployment
modules, and does not require
an RTOS to operate. The library
includes over 150 different
audio blocks, including third-
party IP.

With tools like Audio Weaver, it
has become possible to create
highly tuned audio applications
without engineers needing

to have a deep knowledge

of audio processing. For
companies new to audio,

complete reference designs are
available, with assistance from
DSP Concepts to tune them

for the final production system.
Companies that are comfortable
with audio processing can

work with individual audio
blocks that provide basic
functionality and build them

into higher-level processing

value-add of Audio Weaver is

faster time-to-market.

Accelerating Optimization
To speed design, Audio Weaver

supports cross-platform
development. The ability to run

the same algorithms on a PC as

on the STM32 F4 gives engineers
a powerful environment in

STM32 Journal

MIPS and memory required by
each audio processing stage.
This enables engineers to
measure how much a particular
improvement in sound quality will
cost in terms of CPU utilization
to determine the most efficient
use of processing resources
when many functions have to
operate simultaneously.

When algorithm code is written by hand, each design

iteration requires substantial time investment since the

code must be optimized and tuned to see what its actual

impact on sound quality and processing load are. With Audio

Weaver, the design cycle is much faster, giving developers

the ability to explore more configurations in their efforts to

increase sound quality while reducing system cost.

algorithms. Even sophisticated
companies can accelerate
design using Audio Weaver as

it provides a framework with
core components that not only
jumpstarts design with highly
optimized code but provides a
development environment that
facilitates fast prototyping and
tuning. For these companies the

which to design and tune the
software in parallel with hardware
development. Once target
hardware is available, the code
can be retargeted for the STM32
F4 and final optimizations made,
resulting in significant time-to-
market savings.

During final optimization,
developers can profile the

Consider the use of different
order filters to equalize the
speakers. A lower-order filter,
for example, may provide a
frequency response that is 3 dB
off of the ideal response while a
higher order filter is off by only
1 dB. The relative difference

in CPU utilization between
these two filters can be used

17

to determine where to allocate
CPU resources to maximize
sound quality.

At the end of the day, however,
audio quality is not about
response graphs but how it
actually sounds to people. With
many development systems,
engineers have to make
adjustments to code, recompile,
and download code before they
can hear a new configuration.
However, to assess the impact of
a lower-order filter on quality, for
example, developers need to be
able to hear both configurations
right after each other.

Audio Weaver solves this
problem by supporting a
tuning interface that can
change filter characteristics

in real-time. With the ability to
configure and switch between
multiple settings with the click
of a button, developers can
compare two sets of speaker
equalizations or different spatial
processing. Note that the
tuning interface is seamless
and transparent, compared to
instrumenting code that can
impact quality because of extra
loading on the CPU.

The ability to tune quickly and
easily without recompiling can
substantially shorten the time

it takes to optimize a system.
Flexible tuning also simplifies
the optimization process for
developers new to audio.

Note that audio applications are
not comprised solely of audio
processing. To accelerate system
design, DSP Concepts also
provides an extensive range of
software functionality beyond its
extensive audio module library,
including:

Real-time kernel

Audio I/O management
PC/host control interface
Boot loader

Update manager

Flash file system

System-level Design

One of the challenges to

adding audio to embedded
designs is that while many MCU
manufacturers offer reference
designs, audio is typically

not one of the applications
supported.

To address this shortcoming,
ST has invested significantly in
creating digital audio resources
for its customers in order to
offer complete audio reference
designs as well as tools that
enable the design of quality

audio optimized for the STM32
architecture. For example,

ST and its partners offer a
variety of evaluation boards
with audio capabilities. ST also
offers several docking station
reference designs that provide
a representative design that
can be used in a wide range of
embedded applications.

For Apple Made for iPod (MFI)
licensees, ST offers the Apple
iAP application, a complete
solution based on STM32 F2 and
STM32 F4 devices to deliver a
high-quality music experience.
The Apple iAP application
support both simple accessory
and audio streaming accessory
for iPod, iPhone, and iPad
devices. Components include:

Either the STM322xG-EVAL
or STM324xG-EVAL board
to which developers connect
their Apple Authentication
Coprocessor (ACP) circuit

Free Apple “iPod Accessory
Protocol” (iAP) firmware with
Lingoes for authentication and
control/information data

Free USB Host Library with
USB Host HID class for control
and information data

STM32 Journal

For audio streaming accessories,
the Apple iAP application also
supports:

Free USB Host Library USB
Host Audio classes

Remote iPod/iPhone/iPAD
control

Digital audio streaming
Music tag extraction

Flash card reader capabilities,
such as using an SD card or
MMC, that can decode audio
files from this media. Optimized
decoders are provided for this
purpose free of charge

Today’s consumer audio devices
are complex systems that
require both high performance
to support quality playback

and flexibility to meet rapidly
changing market expectations.
With its high performance

core, efficient multi-layer bus
fabric enabling simultaneous
data transactions, and the right
mix of MCU peripherals and
connectivity, the STM32 F4 is
an ideal architecture for many
embedded and consumer audio
applications. Developers can
now design systems offering
synchronized digital audio
playback of the highest quality
using a single MCU. &

18

