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FUNDAMENTALS OF VOICE Ul

Voice Ul-or voice user inter-
face—features found in the Am-
azon Echo and Google Home
have captured the attention of
consumers. This paper outlines
the basic concerns product de-
velopers face when creating and
optimizing voice Ul products;
examines ways of measuring
and evaluating them; and rec-
ommends best practices in
voice Ul systems engineering.

The runaway success of the Amazon Echo and Echo Dot smart speakers, of
which 10 million are expected to ship in 2017 alone, has made voice com-
mand—often known as voice user interface, or voice Ul—an in-demand fea-
ture in new tech products. The feature is already included in every
smartphone and tablet, in most new automobiles, and in a fast-growing num-
ber of audio products. It's not unreasonable to expect that eventually, most
home appliances, audio and video products, and even wearables such as
fitness trackers, will feature voice command.

“The better the ratio of desired signal
(the user’s voice) to noise (any other
sounds), the more reliably a voice Ul

system will work.”

Now that millions of voice Ul products
are out in the field, we can start to
see what consumers will expect of
these devices—and how challenging
it will be to meet those expectations.
The limited success of previous, more
primitive voice command products
suggests that beyond learning a trig-
ger word, such as “Alexa” or “OK
Google,” consumers are unwilling to
adapt their behavior to the require-
ments that a more primitive voice
command product may place on
them, such as pushing a button to
wake the device up, or speaking di-
rectly into a remote control. In the
home, at least, consumers expect a
voice Ul product to respond to com-
mands spoken from across a room,
and if possible, even from a different
room. They expect dependable voice
recognition no matter what the acous-
tical properties of a room, and no
matter where the product is placed in

the room. And they expect voice Ul to
work even in the presence of moder-
ately loud environmental noise.

Although sophisticated voice recogni-
tion systems rely on Internet-based
computing power, much of the perfor-
mance of a voice Ul system depends
on the quality of the voice signal that
the system receives. The old maxim
“garbage in, garbage out” applies as
much to these systems as it does to
any other technology. The better the
ratio of desired signal (the user’'s
voice) to noise (any other sounds),
the more reliably a voice Ul system
will work.

Voice Ul systems receive their com-
mands using multiple microphones,
usually arranged into arrays con-
trolled through digital signal process-
ing. Much of the accuracy of a voice
recognition system depends on the
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ability of these arrays to focus on the user’s voice and
reject unwanted stimuli, such as environmental noise or
sounds emanating from the device itself. Most of the re-
search into optimizing these arrays and the algorithms
that control them is closely held by the companies that
have pioneered these products, leaving product develop-
ers with few, if any, references that can help them make
informed design tradeoffs.

Complicating matters is the unfamiliarity of microphone
array design. Although countless engineers possess ex-
pertise in loudspeaker design and applications, far fewer
have comparable experience with microphones—and
while most engineers’ ears can usually give them at least
a rough idea of what’s wrong with a speaker, it's much
more difficult to assess microphone performance prob-
lems. The challenge becomes increasingly complex when
the number of microphones is multiplied for an array. Now
the engineer must determine which types of microphones
will work best for the array, what number of microphones
to use, and in what physical configuration to place them.

A processing algorithm is then needed to allow the array
to identify the direction of the user’s voice and focus on
that voice while rejecting other sounds. Many such algo-
rithms are available, and all must be optimized for the
performance of the microphones, the size and configura-
tion of the array, and the acoustical effects of the enclo-
sure in which they are mounted.

The goal of this paper and the follow-up paper, “Optimiz-
ing Performance of Mic Arrays and Voice Ul Systems,”
will be to address each of these variables, using data to
show the effects of the various design choices, and to
give product design engineers the information they need
to make the most appropriate choices for their application.
This paper will start by explaining the basics of micro-
phone arrays and voice Ul algorithm functions.

Microphones Used in Voice UI

Almost all of the microphones used in voice Ul products
are monophonic MEMS (Micro Electrical Mechanical Sys-
tems) types. MEMS microphones offer numerous advan-
tages in the design of microphone arrays for voice Ul
products:

Compact size: MEMS microphones are typically no larg-
er than 5mm on each side, making it possible to fit as
many as seven mics inside a small product form factor.
Surface-mount design further reduces their footprint.

Low cost: As the number of microphones in a product
multiplies, cost can become an important consideration.
MEMS mics are manufactured with the methods used for
integrated circuits, so they tend to be inexpensive. They
can also interface directly with processors that have PDM
(Pulse Digital Modulation) ports, without needing costly
A/D converters.

Consistency: Predictable functionality of a microphone
array demands that the mics within the array be well
matched. Because MEMS microphones are manufactured
using a completely automated process much like that
used to manufacture ICs, unit-to-unit consistency is typi-
cally good.

Most of the microphones used in voice Ul products are
omnidirectional, receiving sound equally from all direc-
tions. Because the directionality of a microphone array is
created through an algorithm rather than through inherent
directionality of the microphones, using omnidirectional
microphones allows the algorithm full flexibility in the way
it processes the various mic signals to create directional
pickup beams.
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Another benefit of omni microphones is that they have flat-
ter frequency response than directional (cardioid) mics. This
characteristic reduces the processing load on the algorithm,
and thus orientation of omni mics in product assembly is not
critical.

Within the available selection of MEMS microphones, the
mic array designer can select from a range of capabilities
and qualities, including sensitivity, noise, frequency re-

sponse matching, and digital and analog output. Some of
these characteristics will be addressed in the follow-up to
this white paper, “Optimizing Performance of Mic Arrays

and Voice Ul Systems.”

Components of a Voice UI Algorithm

The algorithm that makes a voice Ul product possible is ac-
tually a collection of several algorithms, each with a specific
function that helps the microphone array to focus on a us-
er’s voice and ignore unwanted sounds. Here is a brief de-
scription of the algorithms typically used in voice UL.

Trigger/Wake Word

A voice Ul system uses an assigned trigger word—such as
“‘Alexa” or “OK Google’—that the user employs to activate
the voice Ul device. Recognizing this trigger word presents
challenges because the device must do the recognition im-
mediately, using its own algorithm on device; using Internet
resources would create too much delay. The device must
always be active to some degree because it must constant-
ly listen for the trigger word.

Choosing an appropriate trigger word to incorporate into the
algorithm is critical to recognition of the trigger word and
thus the operation of the voice Ul device. The trigger word
must be sufficiently complex to produce a distinctive wave-
form at the microphone output that the algorithm can easily
distinguish from normal speech, otherwise the percentage
of successful recognition may be unacceptably low. The
trigger word must not be a word or phrase that will be com-
monly used, otherwise the rate of false triggering may be
unacceptably high. It also should not be too long, because
the longer the phrase, the more likely that a consumer will
find using the device cumbersome. Typically, a trigger word
using three to five syllables is the best choice.

When evaluating the performance of a trigger word algo-
rithm, there are two main factors to consider. First, how of-
ten does the algorithm indicate a trigger when none is
present? This is measured as false alarms per hour. Sec-
ond, how well does the algorithm correctly detect the trigger
phrase in the presence of background noise? This is mea-
sured as detection percentage.

Most trigger algorithms come in different sizes. Small algo-
rithms take less memory and processing but make more
mistakes; large algorithms require more resources but
make fewer mistakes. Models are also tunable, allowing
product designers to make them stricter (fewer false alarms
but more difficult to trigger) or more lenient (more false
alarms but easier to trigger). Most product designers
choose stricter tunings, because while customers tend to
accept the need to repeat themselves occasionally when
issuing a command, they are less forgiving of false triggers.

“Choosing an appropriate
trigger word to incorporate
into the algorithm is critical
to recognition of the trigger
word and thus the operation
of the voice UI device.”

False alarms are measured by playing hours of spoken
content and counting how often the algorithm produces a
false trigger. Under this test, the difference in performance
of the different model sizes becomes obvious. Figure 1 on
the next page compares the performance of a small, medi-
um and large trigger models for different tuning points.
These conditions are challenging, with almost continuous
spoken dialog presented to the trigger word algorithm.
Achieving fewer than two false triggers per hour under
these conditions is a reasonable goal. The small model is
able to achieve this only with the two strictest tunings on the
far-left hand side of the graph. The medium and large mod-
els achieve this goal over a wider operating range.
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Figure 1: False alarms per hour tested with small, medium and large algorithm models,
with stricter tuning to the left and more lenient tunings to the right.

When measuring the performance of trigger algorithms in
noise, our research shows that the main factor determining
trigger detection rate in the presence of environmental
noise is the signal-to-noise ratio (SNR) measured at the
microphone. The “signal” represents how loud the person’s
voice is at the microphone and the “noise” is the level of the
background noise. In our testing, we use “babble” noise that
simulates typical noise and light conversation in a home.
Graphs for the three model sizes are shown in Figure 2 on
the next page and all models have been tuned to achieve
fewer than two false triggers per hour. The X-axis repre-
sents the SNR, with higher SNRs (cleaner signals) towards
the right. The Y-axis is the probability of detection. For the

most part, the algorithms have the same performance with-
in1or2dB.

We should note here that an SNR of 10 dB or so may seem
unacceptable when compared with SNR numbers of 80 to
120 dB for most audio playback equipment. However, in
voice Ul applications the user’s voice is often only a few dB
louder than the surrounding noise, and as the chart below
shows, an SNR of 10 to 20 dB can deliver excellent results
in voice Ul applications. Accordingly, a 2 dB increase in
SNR can significantly improve voice Ul performance, even
though the same increase would likely be subjectively un-
noticeable in audio playback systems.

“...a 2 dB increase in SNR can significantly improve voice Ul
performance, even though the same increase would likely be
subjectively unnoticeable in audio playback systems.”
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Figure 2: Performance of trigger word detection as a function of SNR. Three different model
sizes were tested and the larger the model the better it performs.

DOA (Direction of Arrival)

Once the trigger word has been recognized, the next step
is to determine the direction of arrival of the user’s voice.
Once the direction is determined, the DOA algorithm tells
the beamformer algorithm in which direction it should focus.

The core function of the DOA algorithm is to examine the
phase or time delay relationship of the signals coming from
the different microphones in the array, and use this informa-
tion to determine which microphone received the sound
first. However, the task is far complicated than it may seem.
Because of reflections from walls, floor, ceiling and other
objects in the room, the sound of the user’s voice will also
be arriving from other directions, not just directly from the
user’'s mouth. The initial sound is all that is wanted for DOA
determination, and the later reflections must be filtered out.
To this end, a DOA algorithm includes precedence logic,
which separates the louder initial arrival from the quieter
reflections. This function electronically eliminates acoustical
reflections within a room, and if carefully tuned, the algo-
rithm is even able to reject reflections off nearby surfaces,
such as a wall directly behind a smart speaker.

The DOA algorithm’s operation is enhanced by automatical-
ly adjusting for the ambient noise level. The algorithm mea-
sures average noise level in the room, and will only
recalculate the position of the user’s mouth if the incoming
signal is at least a certain number of decibels above the
level of the ambient noise. This way, the system can lock
onto a specific direction without being “distracted” by noise
that is relatively low in level.

We measure the accuracy of the DOA algorithm by sur-
rounding the microphone array with eight speakers uniform-
ly spaced on a circle of radius 1 meter. All eight speakers
play diffuse field background noise while one speaker plays
the trigger phrase in addition to the noise. Voice level is
fixed at 60 dBA measured at the microphones and the level
of the diffuse field noise is varied. We vary which speaker is
used to play the trigger phrase and measure which speaker
we classify the sound as arriving from. This produces the
chart shown in Figure 3 on the next page.
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Figure 3: Confusion matrix showing the results of the direction of arrival tests. The row index corresponds
to the actual direction that the sound arrived from; the column index indicates which direction was re-
turned by the DOA algorithm. Ideally, the only non-zero values should be along the diagonal of the matrix
running from top left to bottom right.

It is more useful to condense a confusion matrix down into
a single number which represents the overall accuracy of
the algorithm at a specific noise level. In the DOA algorithm,
we weight errors based on how far they are from the correct
value, so the single-number result we use is the error in de-
grees at a certain SNR. A result of 0 would be perfect DOA

determination, and a result of 180 (the opposite direction
from 0 degrees) is equivalent to the algorithm getting the
most inaccurate possible result. Figure 4 below shows that
the DOA algorithm under test here starts to perform reliably
at SNR above 0 dB. From then on, the algorithm performs
well with a very small average error.

Average deviation

180

160 1

140 A

120 -

100 1

Degrees

80 1

60 -

40 1

20 1

0 T T T
-10.0 -7.5 -5.0 =2.5

0.0 2.5 5.0 1.5 10.0

SNR [dB]

Figure 4: Consolidated DOA results. The X axis represents the signal-to-noise ratio of the wake word utter-
ance. The Y axis is the deviation error in degrees. The DOA algorithm starts to deliver useful performance
at SNR above 0 dB, and accurate performance at SNR is above 5 dB.
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AEC (Acoustic Echo Canceller)

In a voice Ul device that incorporates speakers, such as a
smart speaker or car audio system, one source of noise
that interferes with voice commands is the speakers them-
selves, which may be playing voice feedback, music, radio,
etc. The voice Ul device must subtract the sounds its
speaker produces from the sounds picked up by the mics.

This may seem as simple as blending a phase-reversed
version of the program material into the signals coming
from the microphones, with a slight delay added to compen-
sate for the time it takes for the sound to travel from the
speaker to the microphones. However, this process is
merely the starting point of an AEC algorithm; it is inade-
quate to deal with the numerous complications that real
world applications present.

The first complication is that the waveform of the program
material is altered by the speaker, by the DSP used to
equalize the speaker, and by the microphones used in the
array. Fortunately, it is possible to compare the outputs of
the microphones with the original (pre-DSP) input signal
and calculate correction curves that the algorithm can use
to subtract the direct sound from the speaker from the
waveform of the voice command.

However, the program material is also affected by acousti-
cal reflections. These reflections may number in the thou-
sands, and in a large living room they might arrive at the
mics as much as 1 second after the direct sound from the
speaker. The spectral content of the reflections will differ
from the content of the direct sound from the speaker, de-
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pending on room modes and the absorptive effects of room
furnishings. These effects will be different in every setting,
and will change as people and pets walk around the room,
or as the number of occupants in a vehicle changes.

In order to subtract enough of these acoustical echoes from
the microphone signals to achieve an acceptable SNR, the
AEC algorithm must “look for” sounds that match the pro-
gram material within a certain margin of error (to compen-
sate for changes to the waveform caused by acoustics),
and over a defined time window that corresponds to the ex-
pected reverberation time. Because of the distances be-
tween the microphones in an array, each microphone
receives a slightly different set of echoes and a different
direct sound from the speaker, so achieving maximum SNR
requires separate AEC processing for each microphone.

The performance of an echo canceller is usually defined by
its “echo return loss enhancement,” or ERLE. This is the
gain reduction, in dB, that the echo canceller is able to re-
duce the speaker signal at the microphone. Echo cancellers
should achieve at least 25 dB of cancellation for good per-
formance. The best ones are able to cancel over 30 dB.

The time period over which the AEC looks for reflections is
called the “echo tail length.” The longer the echo tail length,
the more reflections can be canceled and the better the al-
gorithm performs. Longer tails, however, require more
memory and more processing. Figure 5 below shows the
echo return loss as a function of the tail length. This mea-
surement was done in a semi-anechoic sound room. You
can see that most of the cancellation has been achieved
with 200 msec of tail length and longer tails provide only
marginal improvements.
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Figure 5: Echo canceller performance as a function of the tail length. This measurement was
done in a semi-anechoic sound room and it shows that there is little improvement after 200 msec.
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A semi-anechoic room is fairly easy to deal with and does
not represent real-world usage. Figure 6 below shows the
performance of the echo canceller in progressively more

2
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reverberant rooms. The need for longer echo tails is now
obvious and the most reverberant space could benefit from
an even longer echo tail.
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Figure 6: Echo canceller performance in four rooms with increasing reverberation time.
The larger rooms benefit from algorithms using long echo tails.

AEC algorithm performance is better when the speaker per-
forms in a linear fashion. If the speaker exhibits distortion at
loud levels, then distortion components (harmonics) will be
generated and the AEC will not recognize these as reflec-
tions of the original program material, and thus cannot can-
cel them. The total harmonic distortion (or THD) of a
loudspeaker is a measure of its linearity. THD is reported as
a percentage of signal level and the lower the THD, the
more linearly the speaker behaves. The distortion compo-
nents of the loudspeaker will be present in the output of the
AEC since the AEC is unable to cancel them.

It is possible to quantify how the distortion will impact the
performance of the AEC. For example, if the loudspeaker
has 1% THD, then the distortion components will be 40 dB
lower than the signal level. If the echo canceller has an ER-
LE of 30 dB, then a THD of 1% is acceptable. Now consider
a THD of 10%. In this case, the distortion components are
20 dB below the signal level and this will swamp the AEC. A

THD of 3% will generate distortion 30 dB down and this will
still impact the AEC. We recommend a THD less than 2%
so as not to impact an AEC with an ERLE of 30 dB.

It is important to measure the THD of the entire system, in-
corporating the speaker and the microphones. Simply mea-
suring the acoustic output of the speaker is insufficient
because the plastic enclosures used for many voice Ul
products can conduct vibrations directly from the speaker to
the microphones. Consider the graph shown in Figure 7 on
the next page. This graph shows the THD of a loudspeaker
measured with an external reference microphone. Each line
represents a different playback level. For each playback
level, we record the measured SPL and also the THD at
numerous frequencies across the entire audio spectrum.
The circular bubbles on the graph indicate the measured
THD appear only at levels where THD is above 3%. The
speaker behaves linearly, and distorts to a significant de-
gree only when played at loud levels.
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Figure 7: Loudspeaker distortion measurement using an external microphone. The
speaker is linear, and distorts only at high SPL.

This measurement is now repeated using the onboard voice ly (and nonlinearly) with the microphones in the 500 to 800

pickup microphones located at the top of the plastic enclo- Hz range, as shown in Figure 8 below. This is unaccept-
sure of a typical “smart speaker” with voice Ul. In this case, able; the enclosure must be redesigned for added stiffness

there is a resonance of the enclosure which couples strong- and better acoustic isolation.
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Figure 8: The same loudspeaker with the distortion measured by the microphones in the product
itself. In this case, there is conducted sound which causes distortion in the range of 500 to 800 Hz.



Beamforming

The reason multiple-microphone arrays are commonly used
in voice Ul systems is that having more than one mic allows
the array to become directional—to focus on sounds com-
ing from a particular direction. This process is called beam-
forming. It improves SNR because it helps isolate the user’s
voice while rejecting sounds from other directions.

For example, if the user is on one side of the microphone
array and an air conditioner is on the other side, the sound
from the air conditioner arrives first at the microphone oppo-
site the user, then arrives a fraction of a second later at the
microphone closest to the user. The beamformer algorithm
uses these time differences to null out the air conditioner
sound while preserving the user’s voice.

The more microphones in an array, the more effective
beamforming can be. An array with two microphones has a
limited ability to cancel sounds, but an array with multiple
microphones can cancel sounds coming from more direc-
tions. The fewer microphones, the more the performance
will vary as the look angle—the angle between the user’s
voice and the front axis of the voice Ul product—changes.
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A beamforming algorithm can optimize SNR by dynamically
adjusting its performance to suit the conditions. The beam
width can be tightened to focus better on the user’s voice
and more effectively reject sounds from other directions, but
the voice Ul system will then need to evaluate and adjust
DOA more frequently to make sure the beam stays focused
on the user. This effort increases demands on the system,
so most beamformers maintain a fairly wide beam. For ex-
ample, a typical seven-microphone array has a beamwidth
of approximately 60 degrees, or +30 degrees relative to
DOA.

The spectrograms in Figure 9 below demonstrate the ability
of beamforming to remove background noise. The top fig-
ure shows the spectrogram of a single microphone. The
bottom figure is the output from a seven-microphone beam-
former. The horizontal stripes are the harmonics associated
with the speech signal and the background orange/red color
is babble noise. The ideal result would be clearly defined
stripes surrounded by dark regions. In the measurement
from the beamformer, the speech is preserved and the
background noise is attenuated by 6 to 7 dB. This provides
a noticeable improvement in speech recognition.

Figure 9: Spectrogram showing the reduction of background noise that can be achieved by the
beamformer. Dark sections correspond to lower signal levels. The original speech is untouched.



Noise Reduction

Although microphone array systems use directional pickup
patterns to filter out unwanted sounds (i.e., noise), some of
these unwanted sounds can be attenuated or eliminated
with an algorithm that recognizes the characteristics that
separate them from the desired signal and then removes
the unwanted sounds, much as someone who dislikes lem-
on flavor might ignore the yellow candies in a bowl. A noise
reduction algorithm can run on a single microphone or an
array, so it can assist with trigger word recognition and also
improve voice Ul performance after all the other algorithms
have done their jobs. Thus, noise reduction might be used
in multiple stages of a voice Ul signal processing chain.

Voice commands are momentary, as opposed to steady-
state, events. Any sound that is always present, or that is
repetitive, can be detected and removed from the signal
coming from the microphone array. Examples include road
noise in automobiles, and dishwasher and HVAC system
noise in homes. Sounds that are above or below the fre-
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quency spectrum of the human voice can also be filtered
out of the signal.

Noise reduction algorithms have been commonly used for
many years, but most are optimized for cellphone applica-
tions rather than voice Ul. They tend to highlight the fre-
quency spectrum most critical for human comprehension,
rather than the frequency spectrum most critical for an elec-
tronic system to isolate and understand voice commands.
Most noise reduction algorithms that are tuned for cell-
phones actually degrade voice Ul performance. To put it
simply, humans listen for different things than voice Ul sys-
tems do.

One measure of how well a noise reduction algorithm works
is to see how many additional dB of signal reduction it pro-
vides at the output of the echo canceler. Fiqure 10 below
shows the performance of DSP Concepts frequency do-
main based noise reduction algorithm, reducing residual
echoes by up to 12 dB.
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Figure 10: Effects of a noise reduction algorithm on ERL. The higher the curve, the more
attenuation and thus the better the algorithm performs.



The subjective improvement in sound quality is instantly
recognized, but will it improve the performance of the
speech recognition algorithm? This requires additional mea-
surements to quantify. Figure 11 below reproduces ones of
the curves from Figure 2 but does it with and without noise
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reduction. The noise reduction shifts the curve 2 dB to the
left as compared to the original content. This shows that the
noise reduction algorithm improves overall speech recogni-
tion by 2 dB.
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Figure 11: Effects of a noise reduction algorithm on ERL. The higher the curve, the more
attenuation and thus the better the algorithm performs.

In the next paper ...

This concludes our discussion of the fundamentals of voice
Ul systems. In our next paper, “Optimizing Performance of
Mic Arrays and Voice Ul Systems,” we will examine the ef-
fects of different microphone array configurations and differ-

ent microphone choices. After examining these effects, we
will make specific recommendations that engineers and
product design teams can employ to get the most reliable
performance from their voice Ul product designs.



