
pg. 1

WELCOME TO THE NEW SPEED OF SOUND dspconcepts.com

AN-02: Multicore Support In Audio Weaver 8

v05 - 27.Sep.2019

Introduction
Audio Weaver 8 brings a streamlined approach to performing audio processing on multiple processors

in an embedded system. It does this by enabling multiple instances of the AWE Core processing

engine to be instantiated in a product. This support is delivered through a new UI features in AWE

Designer 8, and a simplified API and integration model for AWE Core 8.

Background
The AWE Core is a data-driven, cross-platform audio processing engine. It includes over 400 different

audio building blocks that can be linked together at run-time to implement a unique audio processing

pipeline. This audio processing pipeline (an Audio Weaver “layout”), including the sequence of

modules and their parameters, is described by a block diagram in AWE Designer.

Based on the block diagram, AWE Designer generates a set of configuration data (“tuning data”) the

AWE Core uses to self-configure and implement the desired processing pipeline. During development-

time, this data is sent in real-time via the AWE Server (and tuning interface, e.g. USB, UART, etc),

which allows live modification of the Audio Layout, without needing to reflash or even reboot the board.

Figure 1. Example single-core system on an STM32H7 processor

Multicore Overview

For Audio Weaver 8, the platform architecture was expanded to allow multiple AWE Designer

windows to simultaneously connect to an embedded target through AWE Server, with each

configuring a unique AWE Core instance.

To enable this, a drop-down menu was added to AWE Designer, allowing the user to select

which endpoint (AWE Core instance) should run the given block-diagram. (Note: This drop-

down is only visible when connected to a multi-instance target.)

pg. 2

WELCOME TO THE NEW SPEED OF SOUND dspconcepts.com

Now, when one presses ‘Play’, the configuration data (that corresponds to the block-diagram)

is sent to the target in a series of packets, each including an “Instance ID” parameter – which

the application can use to route the packet to the appropriate AWE Core instance.

Figure 2. Example multi-core system on an STM32H7 processor

Packet Format
As shown in the Audio Weaver Tuning Command Syntax Guide, Audio Weaver packets include a 32-bit

header word that includes the Packet Length (16-bits), InstanceID (8-bits), and Opcode (8-bits).

31 15 7

Length InstanceID Opcode

data payload

CRC

Figure 3. Audio Weaver Tuning Packet Format

AWE Core Instance Information

For AWE Designer on the PC to know what’s happening in the product, it always starts by
sending a packet with an Opcode of “GetInstanceTable”. The AWE instance table is simply

an array containing the valid ID’s for a given product. For example:

unsigned int g_InstanceIDs[NUM_INSTANCES] = {M4_AWE_INST_ID, M7_AWE_INST_ID};

https://dspconcepts.com/sites/default/files/audio-weaver-tuning-command-syntax.pdf

pg. 3

WELCOME TO THE NEW SPEED OF SOUND dspconcepts.com

Unlike all other packets, the user application responds to this request. This can be done using

helper-code in AWECoreUtils.c and AWECoreUtils.h:

//If PC looking for AWE Instance Table:

if (PACKET_OPCODE(TuningBuffer) == PFID_GetInstanceTable)

{

 GenerateInstanceTableReply(TuningBuffer, NUM_INSTANCES, g_InstanceIDs);

 USBSendReply(&g_AWEInstance); //Send reply packet back to the PC

}

Packet Routing

The packet routing code should use the InstanceID parameter to determine where in the

system to send the data. Note: The means of this data-transfer will be application specific,

based on the unique system architecture of the product – some may use a shared memory

buffer, while others might use transport like SPI to send the packet from one processor to

another.

/*---------------- PACKET ROUTING MACROS - MULTI-INSTANCE ONLY ----------------*/

/* This will determine the length of a packet */

#define PACKET_LENGTH_WORDS(x) (x[0]>>16)

#define PACKET_LENGTH_BYTES(x) ((x[0]>>16) * sizeof(x[0]))

/* This will get the instance ID of a packet. */

#define PACKET_INSTANCEID(x) (x[0] >> 8) & 0xff

/* Get the OPCODE of the packet. All opcodes are defined in ProxyIDs.h. */

#define PACKET_OPCODE(x) ((INT32)x[0] & 0xffU)

SMP / OS Support
At the time of writing, a single AWE Core instance will not distribute it’s processing load across

multiple physical cores in an SMP system (such as Linux running on a Quad-core Cortex-A53

complex). Currently, to use more than one core, an application will simply instantiate multiple

AWE Core instances – one for each physical core to be used for audio processing.

New AWE Core variants are planned which will further streamline integration in Linux and

Android environments. These variants will take advantage of Embedded-OS resources,

including the ability to run sections of the audio pipeline on different physical cores.

pg. 4

WELCOME TO THE NEW SPEED OF SOUND dspconcepts.com

Appendix: Packet Routing Example Code
The following C-code example illustrates how packet routing code works in the multicore

STM32H747 sample application:

//---
// METHOD: AWEpacketRouting

// PURPOSE: Called from while(1) loop in background thread. Checks to see

// if a tuning packet has come in, and if so, handles it appropriately

//---

unsigned int g_InstanceIDs[2] = {M4_AWE_INST_ID, M7_AWE_INST_ID};

void AWEpacketRouting(void)

{

 if (g_bPacketReceived) //check flag set by USB RX handler
 {

 g_bPacketReceived = FALSE; //reset flag

 if (PACKET_OPCODE(TuningBuffer) == PFID_GetInstanceTable)

 {
 //PC tools will ask for the product's AWE_Instance_Table (essentially

 //an array of valid InstanceID's. This array resides in the application

 //code of the processor running the tuning interface (here the M4), so

 //the reply can be generated locally, with help from AWECoreUtils.c and

 //AWECoreUtils.h
 GenerateInstanceTableReply(TuningBuffer, NUM_INSTANCES, g_InstanceIDs);

 USBSendReply(&g_AWEInstance); //Send reply packet back to the PC

 }

 else//Ensure the packet is processed by the correct AWE Core instance

 {
 //Packets for M4 instance. Process locally.

 if (PACKET_INSTANCEID(TuningBuffer) == M4_AWE_INST_ID)

 {

 awe_packetProcess(&g_AWEInstance);

 USBSendReply(&g_AWEInstance);

 }
 //Packets for M7 instance. Process remotely.

 else if (PACKET_INSTANCEID(TuningBuffer) == M4_AWE_INST_ID)

 {

 IPCSend(); //Send the packet to the M7 via shared memory,

 IPCWaitForReply(); //wait for the reply,
 USBSendReply(&g_AWEInstance); //and then send the M7's reply back to the PC.

 }

 }

 }

}

