Introduction to
Machine Learning




What is Machine Learning?

Machine learning (ML) is the study of computer algorithms that can improve automatically
through experience and by the use of data. It is seen as a part of artificial intelligence.
Machine learning algorithms build a model based on sample data, known as training data,

in order to make predictions or decisions without being explicitly programmed to do so.

Wikipedia Article for Machine Learning
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https://en.wikipedia.org/wiki/Machine_learning

Types of ML
¢
Cg

» Unsupervised (e.g. clustering)

« Semi-supervised

« Supervised O g fo\f%
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What is the process of Supervised Learning?

THIS 15 YOUR MACHINE LEARNING SYSTE? 1. Get data
YUP! YOU POUR THE DATA INTO THIS BIG 1. Evaluate
PILE OF LINEAR ALGEBRA, THEN COLLECT 2. Clean
THE ANSWERS ON THE OTHER SIDE. 3 Label
AT THEANSLERS ARE LROYG? ) 2. ldentify Relevant Metrics
JUST STIR THE PILE UNTIL —
THEY START LOOKING RIGHT. 3. Featurize data
4. Select/build Model
5. Train Model
6. Evaluate Model
7. Get data
1. Testing on device
2. Deploy
8. Repeat relevant steps as needed
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What is the process of Supervised Learning?

1. Getdata with labels @
2. Featurize data

3. Train Model
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What are Features?

In machine learning and pattern recognition, a feature is an individual measurable property or
characteristic of a phenomenon. Choosing informative, discriminating and independent features is a

crucial element of effective algorithms in pattern recognition, classification and regression.
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Wikipedia Article on Feature (Machine Learning)
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https://upload.wikimedia.org/wikipedia/commons/c/c5/Spectrogram-19thC.png
https://en.wikipedia.org/wiki/Feature_(machine_learning)
https://en.wikipedia.org/wiki/Sampling_(signal_processing)

Leveraging Features

Your dataset describes a feature space

» Once processed into features, your dataset describes a high dimensional problem space

« Good dataset creation ensures that your dataset is representative of the real-world problem you are trying to solve

« Shortcomings become “errors” in production
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Training a Model

How does the model learn?

* Aloss function is a differentiable equation that tells us
how much error we have in our prediction compared to

the ground truth label.

» Using the chain rule, we can calculate the gradient at
each weight in our network and update those values. This

is called back propagation.

« Training is doing this for many iterations of the dataset,
called epochs, the model learns to map inputs to our

desired outputs.
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Dataset Best Practices

In order to make sure we don’t over-train, we split our data into subsets

« Train: Shown to the model during training. The model

Data Training Needs learns from this data.

Training dat Validation dat () Test dat . . . -
reming £e S - Validation: Hold out set during training to ensure

model is generalizing well. Technically, we snoop on

this data during training if the model didn’t learn from it.

“’x, - Test: Final hold out dataset. Used as a final sanity
check before releasing to production. This is the only

decision this dataset should be used to make.

Model behavior can be much more difficult to predict than in traditional algorithm development. Good dataset practices
are therefore crucial to understanding the performance of your model.
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Learning the Feature Space

Your model learns it’s decision boundaries from the feature space

decision boundary

* Models do not think. They are powerful correlation
machines that learn to map inputs to outputs based on

the data you showed them during training.

feature 2

It is possible to over-train your model and memorize

your dataset.

feature 1
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Metrics

Understanding model performance

Regression Classification
) . . o MSPE o Precision-Recall
» Loss functions are not always the easiest to interpret or o MSAE o ROC-AUC

o R Square o Accuracy

understand oAdjusted R Square o Log-Loss

« Often, a ML practitioner will have other ways of evaluating

the model that are not directly used in training but can help

Unsupervised Others
with model selection Models S BV
s Rand Index * Heuristic methods

« MOS Scoring, PESQ e Mutual to find K
Information * BLEU Score (NLP)

« F1, Precision, Recall

https://www.kdnuggets.com/2018/06/right-metric-evaluating-machine-learning-models-2.html
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What Does ML Look Like?

ML Life-cycle : High Level View
Train & Tune

: Feature Engineering "%
Collect of automated feature | | \ Validate
extraction |

Local Script

Mode Mode Experiment
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Artifacts

Keeping Track of all the Things

The ML-Lifecycle: Detailed View

Data Data Labsling Pipeline
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Feature Pre- Algorithm Model Metrics Model U
Data . Engineering processing Selection Ly Training Validation Testing sers
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ML Features




Fast Fourier Transform

« Shows frequency over time

 Linearly spaced frequency bins

« Can apply processing in the frequency domain
and then use an inverse fast Fourier transform

frequency
- (IFFT) to get time domain audio
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Power Spectrogram

Insects |

{r] Marmot

 Built from short time Fourier transform
* Repeat Fourier transform with set window and
hop size
« short-time Fourier transform (STFT)
» Take magnitude squared of frequency bins

« Common for classification tasks
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Mel Spectrogram

4 Mel-spaced filterbank

2 I A
ter » Triangular frequency windows
16}
Ll ‘| * Filter banks that attempt to approximate human
12} ‘ hearing

B || « Humans struggle to hear frequencies that are
o close together. This anomaly is known as
06

| masking.

0.4
02} “ « Get MFCC by applying DCT
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Model Serving
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How Do We Get Trained Models Into Production?

Compile the Model

« Examples
« CMSIS-NN
+ Glow
« MTVM

* Pros
«  More efficient
« Supports more layers
« Cons
« More complicated
« Requires a build
system/compilation process
« Requires building a custom AW
module for each model created

Runtime Interpreter

« Examples

* Pros

« Cons

Tensorflow Lite
Tensorflow Lite Micro
ONNX Runtime
Qualcomm eAl

Easy to use

* Interpreter can be wrapped as an AW module

No model compilation
« Convert model using CLI tools

Less efficient
Slower to support new layers/architectures
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xample AWD Using TF Lite Micro Int

erpreter

tensorflow_lite_micro_speech_commands.awd
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Thank you!
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